2020
SID Annual Meeting
Virtual Conference
MAY 13-16, 2020
Program Book
Plenary Session I

THURSDAY, MAY 14, 2020 | 3:30 PM-4:45 PM EDT | LIVE VIA ZOOM WEBINAR

Presider: Richard Gallo, MD/PhD

3:30 PM-3:45 PM
506 Predicting the long-term outcomes of biologics in psoriasis patients using machine learning
S. Emam1, A. Du1, P. Surmanowicz2, S. Thomsen1, R. Griener1, R. Gniadecki2
1University of Alberta, Edmonton, Alberta, Canada, 2Medicine, University of Alberta, Edmonton, Alberta, Canada

3:45 PM-4:00 PM
476 Utilization and impact of immunotherapy in stage IV melanoma using the National Cancer Database
R. Conic1, 2, R. Knackstedt2, G. Damiani2, B. Gastman2
1University of Maryland, Baltimore, Maryland, United States, 2Cleveland Clinic, Cleveland, Ohio, United States

4:00 PM-4:15 PM
130 Small non-coding RNAs interact with ERK2 and effect MAPK/ERK pathway
Z. Siprashvili1, R. M. Shenoy1, L. Elcavage1, P. Khavari1, 2
1Dermatology, Stanford University, Stanford, California, United States, 2VA Palo Alto Healthcare System, Palo Alto, California, United States

4:15 PM-4:30 PM
861 Intravenous gentamicin therapy for junctional epidermolysis bullosa patients harboring nonsense mutations
M. Hao1, R. Antaya2, J. Cogan1, C. Hamilton5, Y. Hou1, A. Kwong1, D. Woodley1, M. Chen1
1University of Southern California, Los Angeles, California, United States, 2Yale School of Medicine, New Haven, Connecticut, United States

4:30 PM-4:45 PM
361 Skin-induced IL-36 triggers plasma cell IgE class switching and allergic disease
G. J. Patrick1, H. Liu1, M. Alphonse1, D. Dikeman1, C. Youn1, J. Otterson1, Y. Wang1, A. Ravipati1, Q. Liu2, E. Raymond2, M. Ramanujam2, N. Archer1, L. S. Miller1
1Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States, 2Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, United States
Introduction
Richard Gallo, MD/PhD

Luis Garza, MD/PhD

Dr. Garza is an Associate Professor of Dermatology with secondary appointments in Cell Biology and Oncology at the Johns Hopkins University School of Medicine. He did his undergraduate work at Cornell University, followed by an MD-PhD at the University of Pennsylvania. He completed his dermatology residency at the University of Michigan, followed by a postdoctoral fellowship in the lab of George Cotsarelis at the University of Pennsylvania. Dr. Garza's current research focuses on wound healing and regenerative medicine. His lab is funded by the NIH/NIAMS, the DoD, and Maryland State Stem Cell Fund. Dr. Garza is a Board Member of the SID.
Naomi M. Kanof Lecture

Mechanism-Based Breakthroughs in Autoimmune Skin Disease

THURSDAY, MAY 14, 2020

Introduction
Sarah Millar, PhD

Victoria Werth, MD
University of Pennsylvania
Philadelphia, PA

Dr. Victoria Werth is a Professor of Dermatology and Medicine at the Perelman School of Medicine at the University of Pennsylvania and Chief of the Division of Dermatology at the Philadelphia Veterans Administration Hospital. Dr. Werth earned her medical degree from Johns Hopkins University School of Medicine in Baltimore, Maryland. She completed a residency in internal medicine at Northwestern Memorial Hospital in Chicago, Illinois, and dermatology residency and immunodermatology fellowship at New York University School of Medicine in New York, funded by the NIH and Dermatology Foundation. She joined the faculty at Penn in 1989 and has developed an internationally recognized program in autoimmune skin diseases.

She is a co-founder of the Rheumatologic Dermatology Society and previous president of the group. She is co-founder of the Medical Dermatology Society, and a recipient of their lifetime achievement award. She initiated the combined internal medicine/dermatology residency program in the U.S., which has successfully trained prominent leaders in complex medical dermatology. She has a longstanding interest in clinical and translational research pertaining to autoimmune skin diseases, including cutaneous lupus erythematosus, dermatomyositis, and autoimmune blistering diseases, with a focus on improving the outcomes of autoimmune dermatologic diseases. She has developed and validated disease severity tools now used in many international trials for these diseases, with a goal to advancing evidence for current and new therapeutics. Her laboratory studies include studies in cutaneous lupus and dermatomyositis that relate to pathogenesis and heterogeneity of response to treatment, and ultraviolet light effects on skin. Recent clinical studies have examined mechanistic effects of therapeutics in CLE, as well as subset-specific expression of cytokine signatures. Her work has been funded by the Dermatology Foundation, NIH, the Veterans Administration, the Lupus Research Alliance, the Lupus Foundation of America, the Myositis Association, the International Pemphigus and Pemphigoid Foundation, CARRA, and industry.

LECTURESHIP HISTORY
Established in 1988, this award was established to honor the memory of Naomi M. Kanof, MD. The Kanof Lectureship honors an individual making significant contributions to the improvement of health through clinical research. Clinical research is broadly defined as any scientific endeavor with a direct application to improving the prevention, diagnosis, or treatment of clinical disease. This investigative work can be based in the laboratory and should be implemented or just ready to be implemented in clinical practice.
Eugene M. Farber Lecture

Genetic Discoveries in Psoriasis: Towards a Brighter Future

THURSDAY, MAY 14, 2020

Introduction
Lloyd Miller, MD/PhD

Wilson Liao, MD
University of California, San Francisco
San Francisco, CA

Dr. Liao is Professor of Dermatology and Director of the Psoriasis and Skin Treatment Center at the University of California San Francisco (UCSF). As a physician-scientist, Dr. Liao currently serves as Chair of the Scientific Advisory Committee for the National Psoriasis Foundation and also serves as a member of the National Psoriasis Foundation Medical Board. He received his undergraduate degree in biochemistry from Harvard University, M.D. from Harvard Medical School, completed a genomics research fellowship at the National Institutes of Health and his dermatology residency at UCSF. Dr. Liao's clinical expertise includes the use of biologics, phototherapy, and the Goeckerman regimen. He directs multiple clinical trials studying the effects of biologic agents on psoriasis and atopic dermatitis. The Liao laboratory studies the genetic, environmental, and lifestyle triggers of psoriasis and other inflammatory skin diseases. His research program includes high resolution genetic mapping and functional genomics, elucidation of disease pathways through single-cell transcriptional and immunoprofiling technologies, and determination of the role of the microbiome in inflammation.

LECTURESHIP HISTORY
The Eugene M. Farber endowment was established by the family of Dr. Farber who devoted his scientific career to understanding the pathogenesis of psoriasis. In 2007, the SID Board of Directors voted to create the Eugene M. Farber Endowed Lecture. It is presented at the Society's Annual Meeting by an investigator whose work is relevant to expanding our insights into the pathophysiology and treatment of psoriasis.
INTRODUCTION
Kevin Wang, MD/PhD

Valentina Greco, PhD
Yale University
New Haven, CT

Valentina Greco was born in Palermo, Italy and earned her undergraduate degree in Molecular Biology at the University of Palermo, Italy. She earned her PhD with Suzanne Eaton at the EMBL/MPI-CBG, Germany (1998-2002) and her post-doc with Elaine Fuchs at the Rockefeller University (2003-2009). Dr. Greco is currently the Carolyn Walch Slayman Professor of Genetics, Cell Biology and Dermatology Departments, and a member of the Yale Stem Cell Center and Yale Cancer Center at Yale University (2009-present).

The Greco Lab aims to understand how stem cells and their niche cells contribute to organ regeneration by establishing novel approaches to visualize and manipulate stem cells in a live animal.

This work has provided unprecedented insights into tissue regeneration by answering longstanding but elusive questions that continually advance the fields of stem cell biology and regenerative medicine. New concepts established by her group include that the niche regulates stem cell fate and number, stem cells are flexible to environmental demands, differentiation drives self-renewal of stem cells, and homeostatic correction battles the emergence of disease.

Dr. Greco is the recipient of the 2012 American Skin Association Award, 2013 Dermatology Foundation Award, 2014 Women in Cell Biology Junior Award for Excellence in Research from the American Society of Cell Biology, the 2014 International Society for Stem Cell Research Outstanding Young Investigator Award, the 2015 Robertson Stem Cell Investigator Award from the New York Stem Cell Foundation, the 2015 Mallinckrodt Scholar Award, the 2016 Early Career Award from the American Society of Cell Biology, the 2016 HHMI Faculty Scholar Award, the 2017 Glenn Foundation Award, the 2017 Class of ‘61 Award by the Yale Cancer Center, the 2018 Yale Mentoring Award in the Natural Sciences, the 2019 Yale Genetics Department Mentoring Award

LECTURESHP HISTORY
The William Montagna Lecture is given annually at the Society’s Annual Meeting. This award is intended to honor and reward young active investigators. Primary emphasis is given to researchers in skin biology.
Introduction
Richard Gallo, MD/PhD

Gabriel Nuñez, MD
University of Michigan
Ann Arbor, MI

Gabriel Nuñez, M.D., is the Paul de Kruif Endowed Professor in Academic Pathology at the University of Michigan. He received his M.D. degree from the University of Seville, Spain and postdoctoral training in Immunology at the University of Texas Southwestern Medical Center, Dallas. Dr. Nuñez completed his residency training in Anatomical Pathology at Washington University in St Louis. In 1987, he joined the laboratory of Stanley Korsmeyer at Washington University in Saint Louis, where he studied the function of the anti-apoptotic protein BCL-2. In 1991, he joined the Department of Pathology at the University of Michigan in Ann Arbor as an Assistant Professor and was promoted to full Professor in 2001.

Dr. Nuñez is recognized worldwide as one of the foremost experts in gastrointestinal and systemic inflammation, host-microbial interactions, and mucosal immunology. His laboratory identified NOD1 and NOD2, the first members of the Nod-like receptor (NLR) family, a class of pattern-recognition receptors that mediate cytosolic sensing of microbial organisms. Nuñez and colleagues showed that genetic variation in a NLR family member, NOD2, is strongly associated with susceptibility to Crohn’s disease. Dr. Nuñez is the author of more than 350 scientific publications which have resulted in more than 100,000 citations. A prolific speaker, Dr. Nuñez has given more than 450 scientific lectures worldwide. He has mentored more than 100 scientists including 64 postdoctoral fellows. The great majority of his trainees are independent investigators and members of the Faculty of academic institutions in the United States, Europe and Asia.

Dr. Nuñez has received numerous awards during his career including the Dean’s Achievement Award in Basic Science and Distinguished Faculty Lectureship Award from the University of Michigan Medical School, Merit Award from the National Institutes of Health, and the Rous-Whipple Award from the American Society of Investigative Pathology. He is an elected member of the National Academy of Medicine. His research program is supported by several RO1 grants from the National Institutes of Health.

LECTURESHP HISTORY
The Julius Stone Lectureship is intended to promote the advancement of knowledge in immunology as it relates to the skin and skin disease. The Lectureship is intended to honor Dr. Julius Stone, whose great commitment to the application of new principles of immunology to the benefit of patients with skin disorders is recognized by this award.
Concurrent Mini-Symposium 1
Genetic Disease, Gene Regulation, and Gene Therapy

THURSDAY, MAY 14, 2020

276 Autocrine IFN-κ restricts CRISPR-Cas9 keratinocyte transfection through STING-APOBEC3G activation
M. Sarkar1, R. Uppala1, A. Tsoi1, S. Shao1, A. C. Billi1, B. E. Perez White1, A. Kidder1, X. Xing1, J. Kahlenberg1, J. E. Gudjonsson1
1Dermatology, University of Michigan, Ann Arbor, Michigan, United States, 2Dermatology, Northwestern University, Chicago, Illinois, United States, 3Rheumatology, Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States

287 Secreted frizzled-related protein 5 (SFRP5) inhibits the melanin synthesis of melanocytes via Wnt/β-catenin signaling pathway in vitiligo
D. Zou, Y. Chen, L. Zhang, Y. Zhang, J. Chen
The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

288 ATAC-Seq analysis reveals a widespread increase of chromatin accessibility in psoriasis
F. Zhou, L. Tang
Institution of Dermatology, Anhui Medical University, Hefei, Anhui, China

272 Targeted reactivation of a dormant tumor suppressor gene CDKN2A inhibits proliferation of skin cancer cells
J. W. Lee1, D. Rokunohe1, D. D. Walker1, K. Tuttle1, K. Bradwisch1, O. Denisenko2, K. Bomszyt1, M. Kawasumi
1Dermatology, University of Washington, Seattle, Washington, United States, 2Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States

263 First in human use of a novel in vivo gene therapy for the treatment of autosomal recessive congenital ichthyosis: Results of a phase I/II placebo controlled trial
P. Agarwal1, B. Agostini1, A. Collin L’Hortet1, P. Zhang1, S. Krishnan1, A. Paller2
1Krystal Biotech Inc, Pittsburgh, Pennsylvania, United States, 2Northwestern University, Chicago, Illinois, United States

305 In vivo correction of recessive dystrophic epidermolysis bullosa (RDEB) by direct cutaneous COL7A1 gene replacement: Results of a phase 1-2 trial
M. P. Marinkovich1, S. Vinzant1, V. Karkala1, K. Sridhar1, I. Gurevitch1, J. Dolorito1, P. Agarwal1, S. Krishnan1
1Dermatology, Stanford University, Redwood City, California, United States, 2Krystal Biotech Inc, Pittsburgh, Pennsylvania, United States
351 Innate lymphoid cells in the blood of untreated and dupilumab-treated patients with atopic dermatitis

W. Bauer, N. Alkon, C. Bangert, P. M. Brunner, G. Stingl
Department of Dermatology, Medical University of Vienna, Vienna, Austria

336 Diet-induced obesity impairs the antimicrobial defense function of dermal adipocyte progenitors

L. Zhang1, 2, C. Guerrero-Juarez3, S. Chen1, X. Zhang1, M. Yin1, F. Li1, S. Wu1, J. Cheng1, Y. Liu1, T. Hata2, M. V. Plikus2, R. L. Gallo2
1School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China, 2Department of Dermatology, University of California, San Diego, San Diego, California, United States, 3NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States

318 Short-term exposure to Western diet (WD) predisposes mice to psoriasis-like skin and joint inflammation

Z. Shi1, Y. Wan2, S. Hwang1
1Dermatology, UC Davis, Sacramento, California, United States, 2Medical Pathology and Laboratory Medicine, UC Davis, Sacramento, California, United States

339 Dynamic neutrophil and T cell TNF production protects against S. aureus skin infections

C. Youn, M. Alphonse, J. H. Rubens, D. Joyce, D. Dikeman, Y. Wang, R. Ortines, Q. Liu, M. Mazhar, N. Archer, L. S. Miller
Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States

309 Dissemination of cutaneous staphylococcus aureus infection is limited by early neutrophil recruitment regulated by ECRG4

R. A. Dorschner1, A. Baird2, B. Eliceiri2
1Dermatology, University of California, San Diego, San Diego, California, United States, 2Surgery, University of California, San Diego, La Jolla, California, United States

337 Innate immune tolerance of the epidermis is mediated by epigenetic regulation of MAP2K3

Department of Dermatology, University of California, San Diego, La Jolla, California, United States

CME CREDITS: 1.5 HOURS
569 Rilzabrutinib (PRN1008) shows BTK-mediated mechanisms of action supporting clinical development for immune-mediated diseases
C. Langrish, M. Francesco, Y. Xing, J. Bradshaw, T. Owens, P. Nunn
Principia Biopharma, South San Francisco, California, United States

608 Targeting CtBP-mediated proinflammatory gene transcription to treat skin inflammation
H. Li1, C. Zhang1, B. Li1, M. Fujita1, D. Norris1, X. Wang1, M. Huang1
1Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States,
2Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States

578 Improved local drug delivery with bioadhesive nanoparticles in the treatment of skin cancer
J. K. Hu1, H. Suh2, M. Qureshi1, J. M. Lewis1, W. M. Saltzman2, M. Girardi1
1Dermatology, Yale School of Medicine, New Haven, Connecticut, United States, 2Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, United States

577 Plasma exosomal miR-375-3p regulates ferroptosis in keratinocytes by targeting lipid transporter GPX4 in SJS/TEN
C. Zhang, G. Wang, M. Fu
Xijing Hospital, Fourth Military Medical University, Xi’an, China

591 Pan-caspase inhibition is a novel immunotherapeutic against MRSA skin infections in mice
Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States

588 Identification of highly potent and selective Interleukin-1 receptor associated kinase 4 (IRAK4) degraders for the treatment of hidradenitis suppurativa
Immunology, Kymera Therapeutics, Cambridge, Massachusetts, United States
Concurrent Mini-Symposium 4

Skin, Appendages, and Stem Cell Biology

THURSDAY, MAY 14, 2020

778 Identification and analysis of G-protein-coupled receptors (GPCRs) involved in the regulation of keratinocyte proliferation

P. Pedro¹, N. Salinas Parra¹, R. Iglesias-Bartolome²
¹NIH, Bethesda, Maryland, United States, ²National Cancer Institute, Bethesda, Maryland, United States

767 Discovering the signaling pathways underlying mouse Merkel cell development using FACS-based single cell RNA-seq

L. Miao¹, M. Kelly³, S. Barkdull¹, L. Collado¹, M. Kelley², I. Brownell¹
¹Dermatology Branch, NIAMS, NIH, Bethesda, Maryland, United States, ²Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States

769 Single cell transcriptomics reveals dermal fibroblast heterogeneity and a progenitor population that shapes fibroblast heterogeneity

X. Zhang¹, W. Liu¹, L. Sun¹, M. Yin¹, S. Wu¹, L. Zhang¹⁺²
¹School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China, ²Department of Dermatology, University of California, San Diego, La Jolla, California, United States

766 Keratinocyte differentiation is coupled to mechanical cues through the LINC complex

A. G. Zieman¹, R. Stewart¹, A. E. Zubek¹⁺², E. Carley³, I. Jalilian³, M. King³, V. Horsley¹⁺²
¹Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States, ²Dermatology, Yale University, New Haven, Connecticut, United States, ³Cell Biology, Yale University, New Haven, Connecticut, United States

789 Evolution of an Engrailed 1 enhancer underlies expanded sweat gland density of humans

D. Aldea¹, Y. Atsuta², B. Kokalari³, S. Schaffner³, Y. Kamberov¹
¹Genetics, Perelman School of Medicine/University of Pennsylvania, Philadelphia, Pennsylvania, United States, ²Harvard Medical School, Boston, Massachusetts, United States, ³Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States

774 Extreme organization of supra-basal cells allows the building of modular feather architectures for adaptable flight

C. Chuong¹, W. Chang¹, H. Wu¹, M. Lei², W. Juan²
¹Pathology, University of Southern California, Los Angeles, California, United States, ²Integrative Stem Cell Center, China Medical University, Taichung, Taiwan
889 Interleukin-9 promotes malignant T cell survival by inhibiting oxidative stress and lactic acidosis in cutaneous T cell lymphoma
S. Kumar¹, B. Dhamija¹, S. Marathe¹, A. Karulkar¹, N. Sharma², H. Jain², R. Purwar¹
¹Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India, ²Tata Memorial Hospital, Mumbai, India

892 Differentially expressed plasma proteins in pityriasis rubra pilaris patients treated with ixekizumab
J. L. Strunck¹, 2, D. Haynes¹, C. Topham², A. Ortega-Loayza¹, T. M. Greiling¹
¹Oregon Health and Science University, Portland, Oregon, United States, ²University of Utah School of Medicine, Salt Lake City, Utah, United States

868 Pathogenesis based therapy improves cutaneous abnormalities in porokeratosis- A pilot study
L. Azmony¹, 2, Q. Sun³, C. Hamilton³, Y. H. Lim³, J. S. Leventhal³, A. S. Paller⁴, K. Choate³
¹Dermatology, Rabin Medical Center, Petach Tikva, Israel, ²Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, ³Dermatology, Yale School of Medicine, New Haven, Connecticut, United States, ⁴Dermatology and Pediatrics, Northwestern Univ. Med School, Chicago, Illinois, United States

855 Dietary grape intake protects against UV damage in humans by augmenting DNA repair
Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
Presiders: Kurt Lu, MD and Peggy Myung, MD/PhD

3:30 PM-3:45 PM
561 Development and first-in-human characterization of a potent oral CCR4 antagonist for the treatment of atopic dermatitis
RAPT Therapeutics, Inc., South San Francisco, California, United States

3:45 PM-4:00 PM
327 Staphylococcus epidermidis protease EcpA is a deleterious component of the skin microbiome in atopic dermatitis
L. Caud1, 2, M. Williams3, A. Butcher1, T. Nakatsujii1, J. Cheng4, T. Hatai, J. Kavanaugh5, C. Mainzer2, B. Closs1, R. L. Gallo1
1Dermatology, Department, University of California, San Diego, California, United States, 2R&D Department, SILAB, Brive, France, 3Immunology and Microbiology Department, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States

4:00 PM-4:15 PM
717 Enhanced molecular signatures in cutaneous lupus erythematosus patients support distinct pathogenic pathways in African American patients
J. L. Zhu1, L. Tran1, F. Zheng1, J. James2, J. Guthridge3, B. F. Chong1
1Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, United States, 2Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States

4:15 PM-4:30 PM
775 Hyperactivation of sympathetic nerves drives melanocyte stem cell depletion
B. Zhang1, S. Ma1, 2, 3, I. Rachman1, M. Hei1, P. Baraf1, S. Choi1, W. A. Gonçalves10, Y. Shwartz1, E. M. Fast1, Y. Su4, L. I. Zon1, 7, 8, A. Regev1, 8, 3, J. D. Buenrostro1, T. M. Cunha1, 3, I. M. Chiu1, D. Fisher1, Y. Hsu1
1Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States, 2Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States, 3Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States, 4Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Charlestown, Massachusetts, United States, 5Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States, 6Department of Immunology, Harvard Medical School, Boston, Massachusetts, United States, 7Division of Hematology/Oncology, Boston Children's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, United States, 8Howard Hughes Medical Institute, Chevy Chase, Maryland, United States, 9Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil, 10Graduate Program in Cellular Biology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil

4:30 PM-4:45 PM
030 VGLL3, an orchestrator of female-biased autoimmunity, interfaces with the Hippo pathway to modulate genes involved in immunity and fibrosis
A. C. Billi1, C. Zeng1, M. Gharae-Kermani2, S. W. Stoll1, M. J. Wilson1, O. Plazyo1, X. Xing1, J. M. McCarthy1, L. C. Tsio1, 3, J. Kahlenberg2, A. A. Dlugosz1, 4, J. E. Gudjonsson1
1Dermatology, University of Michigan, Ann Arbor, Michigan, United States, 2Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, United States, 3Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States, 4Biostatistics, University of Michigan, Ann Arbor, Michigan, United States, 5Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States
Introduction
Nicole Ward, PhD

Hannah Valantine, MD/MRCP/FACC

Dr. Valantine is the first NIH Chief Officer for Scientific Workforce Diversity, and a Senior Investigator in the Intramural Research Program at the National Heart, Lung, and Blood Institute. Prior to starting this position in April 2014, Dr. Valantine was Professor of Cardiovascular Medicine and the Senior Associate Dean for Diversity and Leadership at Stanford, a leadership position she held since November 2004. She is nationally recognized for her transformative approaches to diversity and is a recipient of the NIH Director’s Pathfinder Award for Diversity in the Scientific Workforce. She is currently leading NIH efforts to promote diversity through innovation across the NIH-funded biomedical workforce through a range of evidence-based approaches. Dr. Valantine maintains an active clinical research program that continues to have high impact on patient care. Current research extends her previous finding that an organ transplant is essentially a genome transplant, and that monitoring the level of donor DNA in a recipient’s blood as a marker of organ damage will detect early stages of rejection. She is currently overseeing a multi-site consortium of mid-Atlantic transplant centers to validate these findings clinically toward the development of a non-invasive tool for detecting early signs of organ rejection.
Introduction
Nicole Ward, PhD

Elena Ezhkova, PhD

Dr. Ezhkova is a Professor of Cell, Developmental, and Regenerative Biology Department at the Icahn School of Medicine at Mount Sinai (NY). Her laboratory implements an array of powerful cellular and high-throughput molecular biology tools to dissect how epigenetic gene regulators play a role in cell fate determination, homeostasis, and regeneration of the skin. Identification of these molecular mechanisms aids in expanding our understanding of skin development, homeostasis, and the progression of various tissue disorders, including cancer.
Medical Ethics Lecture

Biomedical Ethics 2.0: Redefining the Meaning of Disease, Patient and Treatment

FRIDAY, MAY 15, 2020

Introduction
Ponciano "Chito" Cruz, MD

Frederick Grinnell, PhD
UT Southwestern Medical School
Dallas, TX

Frederick Grinnell is the Robert McLemore Professor of Medical Science in the department of cell biology at UT Southwestern Medical Center (UTSW). He received his Ph.D. in biochemistry from Tufts New England Medical Center in 1970. After graduating, he moved to Dallas for postdoctoral work and joined the UTSW cell biology faculty in 1972. Research in his laboratory contributed to the discovery of fibronectin and its importance in wound repair. His studies helped popularize using wound fluid to analyze the human wound environment and led to the observations that chronic wounds contain degraded fibronectin and elevated proteinases. His work also emphasized the importance of studying tissue biomechanics using fibroblasts interacting with 3D collagen matrices. He is a past recipient of a 10 year NIH MERIT award from the NIGMS trauma program. Grinnell also engages in interdisciplinary work in bioethics and at the boundary between science and philosophy aiming to advance science education and public understanding of science. In 1998, he founded and was first director of the UTSW Ethics in Science and Medicine Program and later organized and continues to lead the North Texas Bioethics Network. He has written two books about the nature of science — The Scientific Attitude (2nd Edition, Guilford Press, 1992) and Everyday Practice of Science: Where Intuition and Passion Meet Objectivity and Logic (Oxford University Press, 2009). Everyday Practice was shortlisted for the 2010 UK Royal Society Science Book Prize. In 2012, Fred was elected as a Fellow of the American Association for the Advancement of Science in the Section on History and Philosophy of Science. His commitment to medical education was recognized in 2012 by a UT Regents’ Outstanding Teaching Award, and in 2017, by the State of Texas Minnie Stevens Piper Professor Award.
115 Dysregulated estrogen signaling through CYP1B1 contributes to Notch deficiency in squamous cell carcinoma

L. Yang1,2, X. Li3,4, Y. S. Brooks1,4
1Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, United States, 2Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China, 3Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States, 4Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States, 5King’s Lab, School of Pharmacy, Shanghai Jiaotong University, Shanghai, China

138 Copy number gain at chromosome 7q21 potentiates the large cell transformation in cutaneous T cell lymphoma

F. Liu1, X. Ren1, Y. Wang1
1Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China, 2Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China

142 Epidermal integrin α3β1 is essential to maintain tumor growth and promotes a tumor-supportive keratinocyte secretome

W. M. Longmate1, S. Varney1, D. Power1, R. Pandulal Miskin2, K. E. Anderson1, L. DeFreest1, L. Van De Water1,2, C. DiPersio1,2
1Surgery, Albany Medical College, Albany, New York, United States, 2Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States

135 Clonal dynamics and the earliest steps of carcinogenesis in chronically UV-exposed skin

H. Lee Moffitt Cancer Center, Tampa, Florida, United States
Concurrent Mini-Symposium 7
Interdisciplinary Spotlight (on the Microbiome)

FRIDAY, MAY 15, 2020

860 Microbiome therapy of atopic dermatitis by application of rationally selected human commensal skin bacteria
T. Nakatsuji1, T. Hata1, L. Tong1, J. Cheng1, F. Shafiq1, A. Butcher1, A. Spergel1, K. Johnson1, B. Jepson1, A. Calatroni1, P. Taylor2, D. Leung2, R. L. Gallo1
1Dermatology, UCSD, La Jolla, California, United States, 2National Jewish Health, Denver, Colorado, United States, 3RhoFed Inc, Chapel Hill, North Carolina, United States, 4NIAID, NIH, Bethesda, Maryland, United States

598 Identification of a human skin commensal bacterium that selectively kills cutibacterium acnes
A. ONeill1, T. Nakatsuji1, M. Williams1, R. Mills1, A. Hayashi1, D. Gonzalez2, R. L. Gallo1
1Dermatology, University of California San Diego, San Diego, California, United States, 2Pharmacology, University of California San Diego, San Diego, California, United States, 3Medicine, Tohoku University, Sendai, Japan

362 Psoriatic fungal and bacterial microbiomes identify patient endotypes
I. Salem2, K. P. Schrom1, S. Chu1, M. Retuerto1, B. Richardson2, S. Margvicius2, M. Cameron2, M. Ghannoun1, T. McCormick1, K. Cooper2,1
1University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States, 2Case Western Reserve University, Cleveland, Ohio, United States

241 C. Acnes IA1 Phylotype induces features of acneic skin when applied on 3D in vitro model
S. Bordes, M. Laclaverie, R. Jugé, C. Grimaldi, E. Aymard, B. Closs
R&D Department, SILAB, Brive la Gaillarde, France

343 Quorum Quenching: A promising and physiological microbial control strategy
M. Gault1, L. Danoux1, S. Leoty-okombi1, V. Andre-frei1, P. Ludwig2
1BASF BCS, Lyon, France, 2BASF Corp, Tarrytown, New York, United States

322 The association of Malassezia, barrier disruption, immune dysregulation, and change of lipid metabolism with the pathogenesis of red face syndrome of atopic dermatitis
S. Kim, H. Chu, S. Choi, J. Kim, S. Kim, K. Lee, C. Park
Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
Concurrent Mini-Symposium 8
Patient Population Research

FRIDAY, MAY 15, 2020

427 Leukocytoclastic vasculitis with and without IgA deposition is associated with renal damage: A case-control study
E. M. Leland1, Y. Semenov2, B. Kaffenberger3, K. Williams4, J. Alhariri5, S. Kwatra1
1Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States, 2Dermatology, Washington University School of Medicine, St. Louis, Missouri, United States, 3Dermatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States

413 Wildfire-associated air pollution impacts clinic visits for itch and atopic dermatitis
R. Fadadu1,2,3, B. Grimes1, J. Balmes1,2, M. Wei1
1University of California, San Francisco, San Francisco, California, United States, 2University of California, Berkeley, Berkeley, California, United States, 3Veterans Affairs Medical Center, San Francisco, California, United States

390 Atopic dermatitis and risk of major neuropsychiatric disorders: A population-based cohort study
J. Wan1, D. Shin1, M. Syed1, K. Abuabara2, J. Gelfand1
1University of Pennsylvania, Philadelphia, Pennsylvania, United States, 2UCSF, San Francisco, California, United States

466 The relationship between atopic dermatitis and childhood symptoms of attention deficit/hyperactivity disorder: A longitudinal cohort study
Y. Lee1, N. Tomaszewski2, S. Langan2, K. Abuabara1
1Department of Dermatology, UCSF, San Francisco, California, United States, 2Faculty of Epidemiology and Population Health, LSHTM, London, United Kingdom, 3Tulane University School of Medicine, New Orleans, Louisiana, United States

430 Crohn’s disease prevalence prior to and following hidradenitis suppurativa diagnosis
M. Rosales Santillan1, K. Savage2, M. Porter1, R. Parker3, M. Simon1, A. B. Kimball1
1Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States, 2Drexel University College of Medicine, Philadelphia, Pennsylvania, United States, 3Arcadia.io, Burlington, Massachusetts, United States

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States

437 Risk of second primary malignancies in Kaposi Sarcoma: A U.S. population-based study
B. Nardone1, M. Nasca2, W. Liszewski1, D. P. Westl, G. Micali2
1Dermatology, Northwestern University, Chicago, Illinois, United States, 2Dermatology, University of Catania, Catania, Italy

424 Quality of life in patients with facial cutaneous lupus erythematosus
J. S. Concha1,2, D. Yan1,2, A. Ravishankar1,2, C. Bax1,2, R. Borucki1,2, V. Werth1,2
1Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States, 2CMCVAMC, Philadelphia, Pennsylvania, United States

450 Risk of inflammatory bowel disease in patients with atopic dermatitis- A population based cohort study
M. Syed, D. Shin, J. Wan, J. Gelfand
Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States

CME CREDITS: 2.25 HOURS
163 Single cell analysis of human vitiligo lesions reveals a role for CCR5 in T regulatory cell function
K. Gellatly¹, J. Strassner², K. Essien², M. Ahmed², R. Murphy¹, A. Coffin-Schmitt¹, X. Fan¹, X. Ding², M. Frisoli², E. Kim², Z. Abbas², A. Derr¹, P. McDonel¹, M. Garber¹, J. Harris²
¹Bioinformatics and Integrative Biology, UMASS Medical School, Worcester, Massachusetts, United States, ²Dermatology, UMASS Medical School, Worcester, Massachusetts, United States

186 Immune cell-derived growth factors drive fibrosis in scleroderma and graft-vs-host disease
I. Odell¹, R. Flavell², ³
¹Dermatology, Yale University, New Haven, Connecticut, United States, ²Immunobiology, Yale University, New Haven, Connecticut, United States, ³Howard Hughes Medical Institute, Chevy Chase, Maryland, United States

183 Inference and analysis of cell-to-cell communication from single-cell transcriptomics data on skin
S. Jin¹, C. Guerrero-Juarez², L. Zhang¹, M. V. Plikus², Q. Nie², ¹
¹Mathematics, University of California, Irvine, Irvine, California, United States, ²Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States

171 Single cell RNA sequencing to improve synthetic skin equivalents
S. Atwood¹, A. Stabell¹, S. Wang¹, N. Ling², B. Sun², G. Sen²
¹UC Irvine, Irvine, California, United States, ²UC San Diego, La Jolla, California, United States

161 Single-cell RNA sequencing combined with interstitial fluid proteomics defines cell-type-specific immune gene regulation in atopic dermatitis
T. B. Rojahn¹, V. Vorstandlechner¹, T. Krausgruber², W. Bauer¹, N. Alkon¹, C. Bangert¹, N. Fortelny², K. Rindler¹, A. Elbe-Burger¹, C. Bock², M. Mildner¹, P. M. Brunner¹
¹Medical University of Vienna, Vienna, Austria, ²CeMM Research Center for Molecular Medicine, Vienna, Austria

188 scRNA-seq and RNA-seq for Stiff Skin Syndrome identify pericytes as a key pathogenic cell population and avenue for therapeutic targeting
J. E. Gudjonsson¹, L. C. Tsoi¹, A. C. Billi², O. Plazyo¹, R. Wasikowski², Y. Jiang¹, C. Zeng¹, J. Kirma¹, M. J. Wilson¹, M. Patrick¹, K. Raja³, R. Lafyatis¹, J. Kahlenberg¹, D. Khanna¹
¹University of Michigan, Ann Arbor, Michigan, United States, ²Dermatology, University of Michigan, Ann Arbor, Michigan, United States, ³University of Pittsburgh, Pittsburgh, Pennsylvania, United States
713 Do race and ethnicity impact healthcare utilization and costs? A population study among U.S. non-melanoma skin cancer patients
T. Sierro1, L. Blumenthal1, J. Hekmatjah3, V. S. Chat2, C. Read1, A. Kassardjian1, A. W. Armstrong1
1USC Keck School of Medicine, Los Angeles, California, United States, 2Medical College of Georgia at Augusta University, Los Angeles, California, United States, 3Western Michigan University, Homer Stryker M.D. School of Medicine, Sherman Oaks, California, United States

733 SFRP2-expressing, COL11A1-expressing fibroblasts are the major fibroblast population within keloids
I. Dougherty, V. Cantu, D. Glass
UT Southwestern Medical Center, Dallas, Texas, United States

736 Racial disparities in biologics utilization for psoriasis
W. Hodges1, T. Bhat1, C. Herbosa1, S. Kwatra2, A. Musiek1, C. M. Mann1, Y. Semenov3
1Division of Dermatology, Washington University, St. Louis, Missouri, United States, 2Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, United States, 3Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, United States
806 Bioprinted skin integrates and forms epidermal rete ridges in full-thickness wounds
A. M. Jorgensen, A. Gorkun, M. Varkey, C. Clouse, S. Lee, J. J. Yoo, S. Soker, A. Atala
Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States

816 Dual LSD1/HDAC inhibition accelerates skin wound healing
M. Kida1, M. Wu1, P. Cole1, V. Falanga1, A. Sharov1, R. Alani1
1Dermatology, Boston University School of Medicine, Boston, Massachusetts, United States, 2Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States

815 Targeting GM3 synthesis improves wound healing in human diabetic skin equivalents
T. R. Holmes, K. Lewandowski, K. R. Kwan, M. S. Bonkowski, A. S. Paller
Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States

814 Circadian factors BMAL1 and CLOCK control transcriptional innate antiviral immunity programs in response to skin wounding
S. Kirchner1, 4, V. Lei1, M. Coates1, C. Handfield1, D. Corcoran1, X. Ling1, 5, J. Shannon1, 2, P. Rosa Coutinho Goulart Borges Mariottoni1, D. Hughes6, D. Waters6, K. Dzirasa6, 7, 8, A. S. MacLeod1, 2, 4
1Dermatology, Duke University, Durham, North Carolina, United States, 2Immunology, Duke University, Durham, North Carolina, United States, 3Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States, 4Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States, 5Suzhou Ninth Peoples Hospital, Suzhou, China, 6Neurobiology, Duke University, Durham, North Carolina, United States, 7Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States, 8Neurosurgery, Duke University, Durham, North Carolina, United States
Plenary Session III

SATURDAY, MAY 16, 2020 | 4:00 PM-5:15 PM EDT | LIVE VIA ZOOM WEBINAR

Presiders: Vladimir Botchkarev, MD/PhD, Marjana Tomic-Canic, PhD

4:00 PM-4:15 PM
225 Desmoglein 1 deficiency in knockout mice impairs epidermal barrier formation and results in a psoriasis-like gene signature in E18.5 embryos
Q. R. Roth-Carter¹, L. Godsel¹, J. L. Koetsier¹, J. A. Broussard¹, H. E. Burks¹, G. Fitz⁴, A. L. Huffine¹, S. Amagai¹, S. Lloyd¹, J. Kweon¹, L. C. Tsoi², W. R. Swindell², G. Urciuoli³, C. Missero³, X. Bao³, J. E. Gudjonssoon², K. J. Green¹,
¹Department of Pathology, Northwestern University, Chicago, Illinois, United States, ²Dermatology, University of Michigan, Ann Arbor, Michigan, United States, ³Molecular Biosciences, Northwestern University, Evanston, Illinois, United States, ⁴Vanderbilt, Nashville, Tennessee, United States, ⁵CEINGE, Naples, Italy, ⁶Dermatology, Northwestern, Chicago, Illinois, United States

4:15 PM-4:30 PM
169 MrgprD-expressing neurons maintain cutaneous mast cell homeostasis
S. Zhang¹, T. Edwards¹, J. Cohen¹, T. Hiraï¹, N. Rittenhouse², E. Schmitz², B. McNeil³, Y. Yang¹, H. R. Koerber², T. Sumpter¹, A. Poholek², K. Albers³, D. Kaplan¹
¹Dermatology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States, ²Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States, ³Allergy & Immunology, Northwestern University, Chicago, Illinois, United States, ⁴Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States

4:30 PM-4:45 PM
434 Association of skin response in erythema and sclerosis with survival in chronic graft-versus-host disease
L. X. Baker¹, M. Byrne², P. Martin², S. Lee², H. Chen³, M. Jagasia³, E. Tkaczyk¹
¹Department of Veterans Affairs and Vanderbilt Dermatology Translational Research Clinic, Nashville, Tennessee, United States, ²Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States, ³Fred Hutchinson Cancer Research Center, Seattle, Washington, United States

4:45 PM-5:00 PM
829 Single-cell approaches to uncover adipocyte precursor heterogeneity and differentiation mechanisms in the skin
G. Rivera¹, K. Kamimoto¹, E. Butka¹-², W. Kong¹-², S. Morris¹-²
¹Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, United States, ²Genetics, Washington University in St. Louis, St. Louis, Missouri, United States

5:00 PM-5:15 PM
659 Regulation of 3D genome organization by the STAG2 tumor suppressor in melanoma
Z. Chu, B. Zheng
Dermatology, MGH, Harvard Med School, Boston, Massachusetts, United States

CME CREDITS: 1.25 HOURS
066 In vivo tracking of antigen-specific skin-resident memory CD4+ T cells
Z. Sun¹, K. Zhang², H. Chu³, T. S. Kupper¹, C. Park²
¹Department of Dermatology & Harvard Skin Disease Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States; ²Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University, Seoul, Korea (the Republic of)

099 Competition for active TGFβ eliminates bystander CD8+ TRM from the epidermal niche
T. Hirai¹, Y. Yang¹, Y. Zenke¹, H. Li¹, P. Y. Zhou¹, B. A. Nguyen¹, D. Masopust², D. Kaplan¹
¹Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States; ²Departments of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States

089 Modulation of the IL-23/Th17 immune axis by enhancement of adenosine A2A receptor (A2AR) signaling alleviates psoriasis (PsO)
A. Welihinda, P. Ravikumar, S. Yadav, G. Kang, E. Amento
Molecular Medicine Research Institute, Sunnyvale, California, United States

014 IL-27 induces IL-15 production to facilitate T cell survival in allergic contact dermatitis
J. Suwanpradid¹, M. Lee¹, P. Hoang¹, J. Kwock¹, L. Floyd¹, J. Smith¹, Z. Yin¹, A. Atwater¹, S. Rajagopal¹, R. Kedl¹, D. Corcoran¹, A. S. MacLeod¹
¹Duke University, Durham, North Carolina, United States; ²Jinan University, Guangzhou, China; ³University of Colorado, Aurora, Colorado, United States
Concurrent Session 13
Epidermal Structure and Barrier Function

SATURDAY, MAY 16, 2020

226 Skin controls gut immune function through innate immune ECM cross talk
T. Dokoshi1, F. Li1, M. Liggins1, M. R. Williams1, J. Seidman2, R. Knight1, B. C. Taylor1, J. T. Chang1,
J. Oivera3, R. L. Gallo1
1University of California San Diego, San Diego, California, United States, 2University of California, San
Diego, San Diego, California, United States

243 H3K9me3 methyltransferase Setdb1 and chromatin remodelling ATPase Lsh maintain
constitutive heterochromatin and prevent activation of silent transposable elements in epidermal
keratinocytes
G. Chen1, A. Aziz1, T. Sharova1, E. Frenkel1, A. Fairchild1, L. Yang2, V. A. Botchkarev1, K. Muegge1,
A. Sharov1
1Dermatology, Boston University School of Medicine, Boston, Massachusetts, United States,
2Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington,
United States, 3Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United
States

206 Involucrin knockout mice exhibit decreased Vitamin D receptor expression and reduced
Vitamin D agonist-induced skin inflammation
A. D. Schmidt, M. E. Mathyer, E. Brettmann, C. de Guzman Strong
Washington University School of Medicine, St. Louis, Missouri, United States

205 CD100 maintains the skin barrier function and is involved in atopic dermatitis
Y. Zou1, C. Zhang1, Z. Zhu1, X. Yao1, W. Li1
1Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China,
2Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China, China, 3Dermatology,
Huashan Hospital, Fudan University, Shanghai, China, 4Institute of Dermatology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Nanjing, China

223 Skin barrier, inflammation, and metabolism– connections through Ovol1/Ovol2
M. Dragan, P. Sun, D. Haensel, R. Vu, A. Verlande, A. Pham, Q. Nguyen, G. Gutierrez, S. Masri, X. Dai
Biological Chemistry, UC Irvine, Irvine, California, United States

251 Skin epidermal keratinocyte differentiation-associated processes regulate homeostatic
antiviral protein expression
M. Lee1, J. Shannon1, V. Jain4, S. Joost5, M. Kasper5, D. L. Corcoran6, S. G. Gregory4,
A. S. MacLeod1,2,3
1Dermatology, Duke University, Durham, North Carolina, United States, 2Molecular Genetics and
Microbiology, Duke University, Durham, North Carolina, United States, 3Immunology, Duke University,
Durham, North Carolina, United States, 4Molecular Physiology Institute, Duke University, Durham,
North Carolina, United States, 5Singapore, Singapore, 6Biosciences and Nutrition and Center for Innovative Medicine,
Karolinska Institute, Huddinge, Sweden, 7Center for Genomics and Computational Biology, Duke
University, Durham, North Carolina, United States

229 IRAK2 promotes abnormal epidermal differentiation during inflammatory states to facilitate
and amplify immune responses in skin
S. Shao1, J. E. Gudjonsson2, L. C. Tsoi2, B. E. Perez White3, B. Andersen4, R. L. Modlin5, S. Weidinger4,
J. Kahlenberg7
1Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China, 2Dermatology, University of
Michigan, Ann Arbor, Michigan, United States, 3Northwestern University, Chicago, Illinois, United
States, 4Department of Biological Chemistry, University of California, Irvine, California, United States,
5Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of
California, Los Angeles, California, United States, 6Department of Dermatology and Allergy, University
Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, 7Division of Rheumatology, Department of
Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States

CME CREDITS: 1.75 HOURS
Concurrent Session 14
Patient-Targeted Research

SATURDAY, MAY 16, 2020

509 PIQ-C, a new PROMIS® tool, measures intensity and impact of itch on children with atopic dermatitis
1Dermatology, Northwestern Univ., Chicago, Illinois, United States, 2Medical Social Sciences, Northwestern Univ., Chicago, Illinois, United States

517 Leveraging CRISPR-Cas12a for the detection of human T-cell leukemia virus type 1
C. Baker1, Y. Chen1, M. S. Hayden1, 2
1Geisel School of Medicine at Dartmouth, West Lebanon, New Hampshire, United States, 2Dermatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States

537 Efgartigimod in pemphigus: Interim phase 2 results
1University Clinic of Würzburg, Würzburg, Germany, 2University of Szeged, Szeged, Hungary, 3Chaim Sheba Medical Center, Ramat Gan, Israel, 4Catholic University Policlinic A. Gemelli, Rome, Italy, 5Dermatopathic Institute of the Immaculate, Rome, Italy, 6University of Pécs, Pécs, Hungary, 7University of Debrecen, Debrecen, Hungary, 8Zaporizhzhya State Medical University, Zaporizhzhya, Ukraine, 9University of Lübeck, Lübeck, Germany, 10Bogomolets National Medical University, Kiev, Ukraine, 11Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, 12Ha’Emek Medical Center, Afula, Israel, 13argenx BVBA, Ghent, Belgium

489 Words matter: A randomized controlled study evaluating the impact of decision framing on treatment preferences in adults with psoriasis and psoriatic arthritis
A. Kassardjian1, V. S. Chat2, L. Archuleta1, J. Hekmatjah3, T. Sierro1, C. Read1, A. Y. Chen1, I. Singh1, A. W. Armstrong1
1Keck School of Medicine, Los Angeles, California, United States, 2Medical College of Georgia at Augusta University, Augusta, Georgia, United States, 3Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, United States

488 Intravenous ertapenem therapy for advanced hidradenitis suppurativa
K. Babbush, M. Chias, A. Nosrati, K. Pacific, H. Hosgood, S. Cohen
Albert Einstein College of Medicine, Bronx, New York, United States

555 Practice changing landmark study- multi-institutional analysis of image guided superficial radiotherapy (IGSRT) for the treatment of non-melanoma skin cancer (NMSC)
L. Yu1, D. Ladd2
1Radiation Oncology, Laserderm, Smithtown, New York, United States, 2Tru-Skin Dermatology, Austin, Texas, United States

542 The importance of IL-36 in palmoplantar pustulosis (PPP): An immunohistochemical analysis
R. E. Schopf, N. Assy
Dermatol, Johannes Gutenberg Univ., Mainz, Germany

529 Profiling of phenotypes and plasma proteins identifies biomarkers for psoriasis severity and psoriatic arthritis
J. Walsh, M. Milliken, C. Carroll, S. Belman, K. Callis Duffin, G. Krueger, B. Feng
University of Utah, Salt Lake City, Utah, United States

497 Efficacy of immunotherapy in Merkel cell carcinoma patients with chronic immunosuppression
L. Zawacki, K. Lachance, T. Akaike, P. Nghiem
Dermatology, University of Washington, Seattle, Washington, United States

CME CREDITS: 2.25 HOURS
627 UVB-generated microvesicle particles mediate systemic immunosuppression
L. Liu1, C. M. Rapp1, S. Zheng1, J. B. Travers1,2
1Pharmacology & Toxicology, Wright State University, Dayton, Ohio, United States, 2Dayton Veterans Administration Medical Center, Dayton, Ohio, United States, 3The Ohio State University, Columbus, Ohio, United States

640 CrispR/Cas9 deletion of TLR4 impacts the UV-induced stress response in human keratinocytes
V. Kirschnerova1, M. Khawam1, B. Seligmann2, C. Curiel1,3, G. T. Wondrak1,4, S. E. Dickinson1,5
1University of Arizona Cancer Center, Tucson, Arizona, United States, 2BioSpyder Technologies, Carlsbad, California, United States, 3College of Medicine, University of Arizona, Tucson, Arizona, United States, 4Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States, 5Pharmacology, University of Arizona, Tucson, Arizona, United States

643 XPC dissociation from damaged DNA and efficient global nucleotide excision repair depend on vitamin D receptor
C. Wong1, D. H. Oh1,2
1Dermatology Research Unit, San Francisco VA Health Care System, San Francisco, California, United States, 2Department of Dermatology, University of California, San Francisco, California, United States

628 Evidence that wounding of geriatric skin which upregulates IGF-1 levels protects against both abnormal carcinogenic UVB responses as well as from the development of non-melanoma skin cancer
J. B. Travers1, M. G. Kemp1, D. Spandau2
1Pharmacology, Wright State University, Dayton, Ohio, United States, 2Indiana University, Indianapolis, Indiana, United States

626 Solar simulated light induces cutaneous SCC in inbred mouse strains: Development of a clinically relevant mouse model
A. C. Adams4, A. M. Macy4, H. Cui5, J. Merida2, S. E. Dickinson1,4, D. J. Glembocki2, D. J. Roe1,1, K. T. Hastings4,5
1Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, United States, 2US Dermatology Partners Pathology Lab, Scottsdale, Arizona, United States, 3University of Arizona Cancer Center, Tucson, Arizona, United States, 4University of Arizona College of Medicine, Phoenix and Tucson, Arizona, United States

637 Age and insulin-like growth factor-1 (IGF-1) status impact translesion synthesis (TLS) pathway activation in human keratinocytes and skin epidermis
M. G. Kemp, R. J. Hutcherson, A. Alkawar, A. J. Castellanos, R. D. Gabbard
Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States

645 5-(3', 4'-Dihydroxyphenyl-valerolactone) regulates DNA methylation in UVB-irradiated keratinocytes
A. Kim1, B. Mock1, H. Lee1, Y. Kang1, D. Kim1,2, J. Shin1,2
1Skin Biology Research Center, Department of Biochemistry, CHA University School of Medicine, Seongnam-si, Gyunggi, Korea (the Republic of), 2Dermatology, Bundang Medical Center, Seongnam-si, Gyunggi, Korea (the Republic of)
697 A nuclear cAMP microdomain suppresses tumor growth by Hippo pathway inactivation
M. M. Drozdz1, A. Doane1, G. Desman1, J. Wang1, M. Reilly2, K. Aguirre2, E. Kane2, J. Wolchok3, T. Merghoub2, O. Elemento2, E. Piskounova2, J. Zippin2
1Icahn School of Medicine at Mount Sinai, New York, New York, United States, 2Weill Cornell Medical College, New York, New York, United States, 3Memorial Sloan Kettering Cancer Center, New York, New York, United States

664 Oncogenic melanocyte stem cells, driven by regenerative niche signals, give rise to heterogeneous melanoma resembling human melanoma
1Dermatology and Cell Biology, New York University School of Medicine, New York, New York, United States, 2Tokyo Medical and Dental University, Tokyo, Japan, 3University of Pennsylvania, Philadelphia, Pennsylvania, United States, 4Yale University, New Haven, Connecticut, United States, 5Case Western Reserve University, Cleveland, Ohio, United States, 6Kyoto University, Kyoto, Japan, 7Pathology, New York University School of Medicine, New York, New York, United States, 8CEA/DRF/IBFJ/IRCM/LRTS, Fontenay-aux-Roses cedex, France, 9Technische Universität München, München, Germany

675 The phosphorylation of CD147 by Fyn plays a critical role in melanoma cell growth and metastasis
X. Zhang, Y. Guo, X. Chen, C. Peng
Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China

689 Anti-tumor effects and mechanism of 4′-bromo-resveratrol in a BRAFV600E/PTENNULL melanoma mouse model
G. Chhabra, C. K. Singh, M. A. Ndiaye, N. Ahmad
Dermatology, University of Wisconsin-Madison, Madison, Wisconsin, United States